SUMMMARY

16.1 Acids and Bases

Theory	Acid	Base
 Arrhenius 	Produces H ⁺ in solution	Produces OH ⁻ in solution
• Bronsted – Lowry	H ⁺ donor	H ⁺ acceptor
• Lewis	Electron pair acceptor	Electron pair donor

16.2 Acid Strength

Strong Acids

- Completely dissociate (ionize)
- Have weak conjugate bases
- HCl, HBr, HI, H₂SO₄, HNO₃, HClO₄

Weak Acids

- Do not completely ionize
- Have a strong conjugate base
- CH3COOH

16.3 Water as an Acid and a Base

Amphoteric Substances

- Behave like acids and bases
- H₂O, NH₃, HSO₄

Ionization of Water

$$H_2O + H_2O \rightarrow H_3O^+ + OH^-$$

Hydronium Ion

Ionization of Water simplified

$$H_2O \rightarrow H^+ + OH^-$$

At 25°C,
$$[H^+] = [OH^-] = 1.0 \times 10^{-7} \text{ moles } / L$$

$$[H^{+}] \times [OH^{-}] = 1.0 \times 10^{-14} = K_{w}$$

In a neutral solution, $[H^+] = [OH^-]$

In an acidic solution, $[H^+] > [OH^-]$

In a basic solution, $[H^+] < [OH^-]$

16.4 The pH Scale

$$pH = - log [H^+]$$

$$pOH = - log [OH^-]$$

$$pH + pOH = 14$$